TŁUMACZ PRZYSIĘGŁY JĘZYKÓW ANGIELSKIEGO i NIEMIECKIEGO Marek Bagiński 15-746 Białystok, ul. Tuwima 13/35 tel. 85 65 17 089 biuro@prolingua.com.pl

Repertorium nr 2134/2019

Tłumaczenie poświadczone z języka angielskiego [uwagi tłumacza kursywą w nawiasach]

CERTYFIKAT TESTU EKOPROJEKTU

[znak]

Strona 1 z 2

Wyciąg ze spi	Wyciąg ze sprawozdania nr: 300-ELAB-2430 DUŃSKI		
Producent:	NIBE-BIAWAR sp. z o	.0.	INSTYTUT
	Al. Jana Pawła II 57, 3	15-703 Białystok	TECHNOLOGICZNY
	NIP UE PL542020029	02	Teknologiparken
Wyrób:	Kocioł na biopaliwo		Kongsvang Allé 29
Model:	Kocioł Pellux Compac	ct i palnik PBMAX 12.1	DK-8000 Aarhus C
	Kocioł Pellux Compact Touch i palnik PBMAX 12.1 Tel. +45 72 20 10 00		
	Kocioł Pellux Compact 12 i palnik PBMAX 12.1 Faks +45 72 20 10 00		
	Kocioł Pellux Compact Touch 12 i palnik PBMAX 12.1 Info@teknologisk.dk		
	Kocioł Metrocompact 12 i palnik PBMAX 12.1		
Procedura:	Badanie przeprowadzone zgodnie z EN 303-5:2012		
Wymagania:	Rozporządzenie Komisji (UE) nr 2015/1189, Załącznik II, art. 1		
Podajnik:	Automatyczny	Paliwo: Biomasa	

Badanie przeprowadzono na pellecie drzewnym (C1), uzyskano następujące wyniki:

WYNIKI BADANIA

Pomiar	Jednostka	Wynik	Wartości graniczne
Nominalna moc cieplna	kW	13,2	
Stężenie CO na 10% O ₂	mg/m _n ³	115	
Stężenie OGC na 10% O ₂	mg/m ³	< 6	
Stężenie pyłu na 10% O ₂	mg/m _n ³	33	
Stężenie No _x na 10% O ₂	mg/m ³	194	
Wydajność	%	93,4	
Minimalna moc cieplna	kW	3,5	
Stężenie CO na 10% O ₂	mg/m ³	402	
Stężenie OGC na 10% O ₂	mg/m ³	18	
Stężenie pyłu na 10% O ₂	mg/m ³	31	
Stężenie No _x na 10% O ₂	mg/m _n ³	157	
Wydajność	%	89,1	

2/1173/05

7

Repertorium nr 2134/2019

75

Emisje sezonowe			
Stężenie CO na 10% O ₂	mg/m ³	359	500
Stężenie OGC na 10% O ₂	mg/m ³	16	20
Stężenie pyłu na 10% O2	mg/m ³	31	40
Stężenie No _x na 10% O ₂	mg/m _n ³	163	200

Sezonowa efektywność energetyczna ogrzewania pomieszczeń

ŋs	%	78,4
ŋson	%	83,1
F1	%	3,0
F2	%	1,7

Zwracamy uwagę na to, że podane wartości stanowią wyciąg sprawozdania z badania. W celu uzyskania dodatkowych informacji należy zapoznać się ze sprawozdaniem z badania.

Aarhus, 7 października 2019 r. [podpis nieczytelny] Torben Nørgaard Jensen B. Sc. [licencjat nauk ścisłych]

Niniejszy certyfikat został sporządzony, a wartości obliczone na podstawie sprawozdania z akredytowanego badania wykonanego przez instytut badawczy na podstawie akredytacji DANAK, członka EA [Europejska Współpraca w zakresie Akredytacji] i ILAC [Współpraca Międzynarodowa w zakresie Akredytacji Laboratoriów].

07-10-2019 r. 10:00:59 [tekst w języku trzecim] Niniejszy dokument PDF jest ważny tylko wówczas, gdy został podpisany cyfrowo za pomocą podpisu cyfrowego OCES Torbena Nørgaarda Jensena z Duńskiego Instytutu Technologicznego.

KONIEC TŁUMACZENIA

Niniejszym poświadczam zgodność powyższego tłumaczenia z załączoną kopią dokumentu w języku angielskim.

Marek Bagiński, tłumacz przysięgły języka angielskiego, wpisany na listę tłumaczy przysięgłych prowadzoną przez Ministra Sprawiedliwości pod numerem TP/1173/05.

Białystok, dnia 15 petderente 2019v.

TEST REPORT

Report no.: 300-ELAB-2430

DANISH TECHNOLOGICAL INSTITUTE

Teknologiparken Kongsvang Allé 29 DK-8000 Aarhus C +45 72 20 20 00 info@dti.dk www.dti.dk

Page 1 of 16 Init.: APOD/TNJ Order no.: 880117 No. of appendices: 2

Requested by: Product:	Company: Address: Postcode/town: Country: Automatic biofuel boiler	NIBE-BIAWA Al. Jan Pawla 15-703 Bialy Poland	a II 57		
	Manufacturer: NIBE-BIAWA	C	Type: Pellu	x Compact & PB	ΜΛΥ 12 1
		N .	rype. renu		MAX 12.1
	Nominal output: 13,2kW		Fuel: Pellet	s C1	
Sample:	Receipt at DTI, Aarhus:	27.06.2019,	sampled by	NIBE-BIAWAR	
Test period:	Date of testing:	01.07.2019	- 26.08.2019	9	
Procedure	Testing of biofuel boiler acco	ording to DS/I	EN 303-5:20)12.	
Result:	Requirements according to DS/EN 303-5:2012 Class 5 were met in relation to emissions and efficiency. Requirements regarding documentation material and construction details were fulfilled.				
Remarks:	See paragraph 2 - Remarks.				
Terms:	Accredited testing was carried out in compliance with the current guidelines laid down by DANAK (The Danish Accreditation), cf. <u>www.danak.dk</u> , and the general terms and conditions of The Danish Technological Institute. The test results apply to the tested products only. This test report may be reproduced in extract only if the laboratory has approved the extract in writing.				
Issued:	Date 06.11.2019, Danish Te	chnological Ir	nstitute, Aar	hus, Energy Lab	oratory

Andaghanter

Signature:

Anders Pødenphant B. Sc.

Consultant

Toka Nefigoord

Torben Nørgaard Jensen B. Sc.

Quality Assurance

21-11-2019 14:44:31

Dette PDF dokument er kun gyldigt, hvis det er digitalt signeret med OCES digitalsignaturen for Anders Pødenpant, Teknologisk Institut. This PDF document is only valid if digitally signed with the OCES digital signature for Anders Pødenpant, Danish Technological Institute.
 Report No.:
 300-ELAB-2430

 Date:
 06.11.2019

 Initials:
 APOD/TNJ

 Page
 2 of 16

1. Documentation material

- Drawings
- Data sheets
- Photos
- User manual & technical information
- Boiler plate
- Risk assessment

The documentation material is enclosed as a digitally signed PDF file.

2. Remarks

Revision concerns two corrections of Danish words that was not translated to English. There has also been added 4 product types which are covered by this report.

This report also covers following product types:

- Pellux Compact Touch boiler & PBMAX 12.1 burner
- Pellux Compact 12 boiler & PBMAX 12.1 burner
- Pellux Compact 12 Touch boiler & PBMAX 12.1 burner
- Metrocompact 12 boiler & PBMAX 12.1 burner

Control of the welded steel sheet boiler, electrical safety and EMC is not included in this report (see paragraph 4.2).

3. The basis of the test

This report concerns testing of a biofuel boiler. The boiler has been subject to random sampling and is representative for appliances from the production.

Testing was carried out by Danish Technological Institute, Kongsvang Allé 29, DK-8000 Aarhus C, Denmark.

4. Product description

4.1. Test specimen

Overall description

Pellux Compact & PBMAX 12.1 is a compact fully automatic boiler for combustion of pelletized solid fuel. The fuel is transported from an internal fuel hopper via an inclined auger and drop chute to the burner. The combustion takes place in a horizontal steel burner.

The boiler controller is fully modulating without lambda prope. There is an ongoing measurement of flow temperature and flue gas temperature.

The boiler is a welded steel sheet boiler. The convection unit consists one horizontal channel without turbulator and 6 vertical flue gas channels, all of them provided with turbulators. The turbulators are included in the automatic cleaning mechanism.

For protection against back-fire the unit is equipped with a drop chute and heat sensor on the chute. The burner can be removed from the boiler without tools and has a switch which cuts power supply by removal.

The boiler is not suitable for log wood burning.

Photos

Photo of boiler at the test rig.

Specifications

Feeding system		
Туре	Inclined auger and drop chute	
Auger motor	SPG S8R25GX-TCE(L42), 220V, 50Hz, 25W, 1200rpm	

Burner		
Туре	Air-cooled horizontal steel burner	
Combustion air	EbmPapst RLD85/0034A, 230V, 50Hz, 35W	

Boiler		
Туре	Welded steel sheet boiler	
Water content	75 litre	
Flue gas tube, outer diameter	ø 120 mm	
Flow connection	1″	
Return connection	1″	
Convection unit	1 horizontal channel, 6 vertical channels	
Turbulators	6 circular turbulators	

Regulation system		
Туре	Fully modulating	
Operation	Via internal panel	

Other	
Automatic ignition	Yes
Automatic ash removal	No
Automatic cleaning of convection unit	Yes

Main dimensions, biofuel boiler	
Height	app. 1280 mm
Width	app. 450 mm
Depth	app. 113 mm
Weight	app. 300 kg

Safety equipment		
Temperature controller	Electronic	
Safety temperature limiter	Rozmerovy KNTP 8823.02 (manual reset)	
Safety against back-burning	Inclined auger and drop chute	
Safety against back-burning	Temperature sensor on drop chute	

4.2. Requirements for construction etc.

Parameter	Reference paragraph in EN303-5	Requirement met yes/no
General requirements		
Safety at normal use	4.1	yes
Requirements for documentation		
Drawings	4.2.1.1	yes
Quality manual	4.2.1.2	yes
Data plate	7.1-7.2	yes
Technical information	8.2	yes
Operating instructions	8.3	yes
Risk assessment	4.3.1	yes
Requirements for welded steel sheet boiler		
Execution of welding work	4.2.2.1	*
Welding seams and welding fillers	4.2.2.2	*
Parts of steel subject to pressure	4.2.2.3	*
Minimum wall thicknesses and tolerances	4.2.2.4	*
Requirements for safety and design		
Venting of the water sections etc.	4.2.4.1	yes
Cleaning of heating surfaces	4.2.4.2	yes
Inspection of the flame	4.2.4.3	yes
Water tightness	4.2.4.4	yes
Replacement parts	4.2.4.5	yes
Boiler shell tappings	4.2.4.6	yes
Thermostat pockets	4.2.4.7	yes
Thermal insulation	4.2.4.8	yes
Water side resistance	4.2.4.9	yes
Integral fuel hopper	4.2.4.10	yes
Fuel chamber	4.2.4.11	yes
Ash chamber	4.2.4.12	yes
Overfeeding or disturbances in the fuel supply	4.3.4	yes
Supply of combustion air	4.3.5	yes
Surface temperatures of accessible parts	4.3.6	yes
Leakage of combustion products	4.3.7	yes
Safety requirements for fuel supply		
Generally	4.3.3.1	yes

Manual stoking	4.3.2	no
Automatic stoked boilers	4.3.3	yes
Thermal conductance	4.3.3.2	yes
Back flow of ignitable combustion gasses	4.3.3.3	yes
Fire propagation into the fuel line	4.3.3.4	yes
Alternative verification of safety against back burning	4.3.3.5	yes

Safety requirements for automatic stoking		
Temperature control for open vented systems	4.3.8.2	yes
Temperature control for closed vented systems	4.3.8.3	yes1
Accessories	4.3.9.1	yes
Electrical safety	4.3.9.2	*
Electromagnetic compatibility, EMC	4.3.9.3	*

 $^{^1}$ Only applies for automatic stoking. \ast Not included in this report. Please refer to the manufacturer's EU declaration of conformity.

5. Test results

5.1. Waterside resistance

Equivalent temperature difference at nominal output	Water flow	Pressure drop
20 К	0.6 m³/h	0.3 mbar
10 K	1.1 m³/h	2.5 mbar

5.2. Surface temperatures

Equivalent temperature difference at nominal output	Measured temperature	Allowed limit
Boiler doors etc., average of 5 measurements	32 °C	+ 100 K
Boiler bottom, average of 5 measurements	42 °C	+ 65 K
Handles being touched during operation		
Metal and similar materials	-	+ 35 K
Porcelain and similar materials	-	+ 45 K
Plastic and similar materials	27 °C	+ 60 K
Boiler's average surface temperature		
Average of 10 spot measurements	32 °C	-
Ambient temperature	27 °C	-

5.3. **Disconnection of air fan**

	Measured CO	Allowed limit
Disconnection of air fan	3.8 % _{vol.}	5 % _{vol.}

5.4. Function check

The firing system is rapidly disconnectable, DS/EN303-5 paragraph 4.3.8.3 a) and therefore the safety equipment includes a temperature controller and a safety temperature limiter with manual reset. The thermostats are tested in accordance with DS/EN303-5 paragraph 5.13. Loss of power supply and sudden absence of heat dissipation are tested according to paragraph 5.14.

	Measured temperature	Allowed limit
Temperature controller	81 °C	100 °C
Safety temperature limiter	101 °C	110 °C
Sudden absence of heat dissipation	87 °C	100 °C
Loss of power supply	74 °C	100 °C

5.5. Test results at nominal heat output

Parameter	Value	Unit
Return temperature	58.0	°C
Flow temperature	71.3	°C
Water flow	0.87	m³/h
Heat output	13.2	kW
Test duration	6.0	н
Power consumption	35	W
Fuel consumption	2.9	kg/h
Water content	6.1	%
Net calorific value	17.7	MJ/kg
Gross calorific value	19.1	MJ/kg
Heat input	14.1	kW
Efficiency	93.4	%
Ambient temperature	23	°C
Flue gas temperature	107	°C
Chimney draught	16	Ра
Flue gas volume flow	32	m³/h
Flue gas mass flow	30	kg/h
CO ₂	12.2	% _{vol.}
Dust at 6% O ₂	45	mg/m _n ³
Dust at 10% O ₂	33	mg/m _n ³
Dust at 13% O ₂	0.02	g/m _n ³
Dust emission	16	mg/MJ
CO measured	106	% _{vol.}
CO at 6% O ₂	157	mg/m _n ³
CO at 10% O ₂	115	mg/m _n ³
CO at 13% O ₂	0.08	g/m _n ³
CO-emission	54	mg/MJ
NO _x (NO ₂) at 6% O ₂	264	mg/m _n ³
NO _x (NO ₂) at 10% O ₂	194	mg/m _n ³
NO_x -emission (NO_2)	91	mg/MJ
OGC (C) at 6% O ₂	< 8	mg/m _n ³
OGC (C) at 10% O ₂	< 6	mg/m _n ³
OGC-emission (C)	< 3	mg/MJ

All emission values are stated on the basis of dry flue gas.

5.6. Test results at partial heat output

Parameter	Value	Unit
Return temperature	58.0	°C
Flow temperature	71.9	°C
Water flow	0.22	m³/h
Heat output	3.5	kW
Test duration	6.0	н
Power consumption	20	W
Fuel consumption	0.8	kg/h
Water content	6.1	%
Net calorific value	17.7	MJ/kg
Gross calorific value	19.1	MJ/kg
Heat input	3.9	kW
Efficiency	89.1	%
Ambient temperature	25	°C
Flue gas temperature	75	°C
Chimney draught	9	Ра
Flue gas volume flow	13	m³/h
Flue gas mass flow	13	kg/h
CO ₂	7.4	% _{vol.}
Dust at 6% O ₂	42	mg/m _n ³
Dust at 10% O ₂	31	mg/m _n ³
Dust at 13% O ₂	0.02	g/m _n ³
Dust emission	15	mg/MJ
CO measured	225	% _{vol.}
CO at 6% O ₂	548	mg/m _n ³
CO at 10% O ₂	402	mg/m _n ³
CO at 13% O ₂	0.29	g/m _n ³
CO-emission	187	mg/MJ
NO _x (NO ₂) at 6% O ₂	215	mg/m _n ³
NO _x (NO ₂) at 10% O ₂	157	mg/m _n ³
NO_x -emission (NO_2)	73	mg/MJ
OGC (C) at 6% O ₂	25	mg/m _n ³
OGC (C) at 10% O ₂	18	mg/m _n ³
OGC-emission (C)	8	mg/MJ

All emission values are stated on the basis of dry flue gas.

5.7. Other measurements

Subject	Measured	Unit
Power consumption at standby	8	W

6. Test conditions

The moisture content of the fuel was determined according to the weigh/dry method. Sample from both nominal and partial load tests were taken.

Determination of particle emission at in-stack sampling with tubular filter device. Drying before and after sampling for minimum 4 hours at 105 $^{\circ}$ C.

Temperature settings on unit during testing at nominal and partial testing was 80 $^{\rm o}{\rm C}$ at nominal and 72 $^{\rm o}{\rm C}$ at partial.

7. Test equipment

Testing rig and equipment has been set up according to EN 303-5 and EN 304.

Rack B1			
Instrument	Туре	Traceability	Instrument number
Data logger	HP 34970A	DANAK 200	270-A-2436
PC	Dell	-	-
CO/CO ₂ analyser	ABB EL3020	-	101360
FID analyser	M&A	-	270-A-2419
Pressure gauge	Autotran 700	ELAB	270-A-2479
Heated hose/probe	M&C	-	270-A-2481
Heated hose/probe	M&C	-	270-A-2483
Ambient temperature sensor	Туре К	ELAB	270-A-2487
Span gas, C₃H ₈	AGA	Swedac	135578

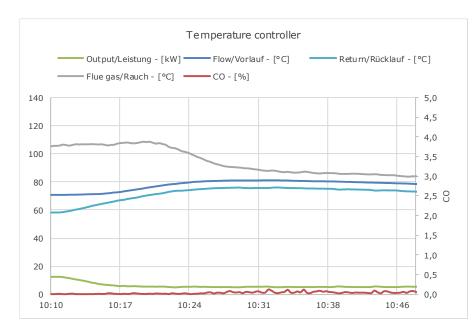
Rack 3			
Instrument Type Traceability Instrument numbe			
NO _x analyser	ECO Physics CLD-60	-	98348

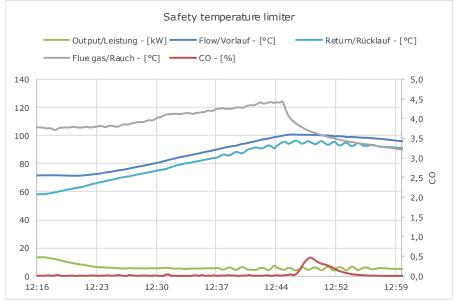
Test rig 2				
Instrument	Туре	Traceability	Instrument number	
Water flow meter	0-3,2 m³/h	DANAK 200	127920	
Water temperature sensor	Pt100 (flow)	DANAK 200	106551	

Report No.: 300-ELAB-2430 Date: 06.11.2019 Initials: APOD/TNJ Page 11 of 16

INSTITUTE

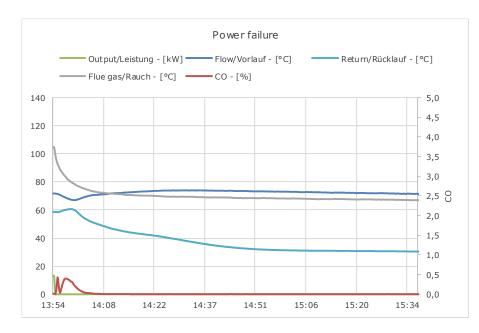
Water temperature sensor	Pt100 (return)	DANAK 200	106552
Gas meter	Elster BK-G2,5MT	DANAK 9	121799
Flue gas temperature sensor	Туре К	ELAB	270-A-2485

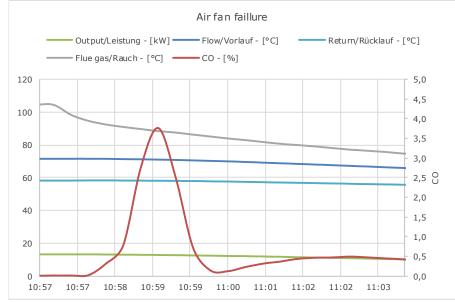

Other equipment					
Instrument	Туре	Traceability	Instrument number		
Adiabatic calorimeter	-	IVC, Kemi	-		
Span gas, CO/CO ₂	AGA	Swedac	135573		
Span gas, CO/CO ₂	AGA	Swedac	135574		
Zero gas, N ₂	AGA	Swedac	135575		
Span gas, NO/CO	AGA	Swedac	135576		
Data collection programme	N.I. Labview	-	TI-DOP ver. 13.28.vi		
Dust measuring equipment	Ströhlein	-	270-A-1330		
Surface thermometer	Technoterm 5500	DANAK 200	270-A-976		
Water gauge	ELAB	-	270-A-1759		
Scale (dust)	Mettler XS 204	ELAB	Id.nr. 7084		
Scale (humidity)	Mettler PC 440	ELAB	270-A-947		
Scale (fuel)	Sauter 60 kg	ELAB	270-A-484		
Temperature calibrator	Jofra 650 SE	ELAB	270-A-0912		
Scale (boiler)	Mettler IND 560	ELAB	270-A-0551		

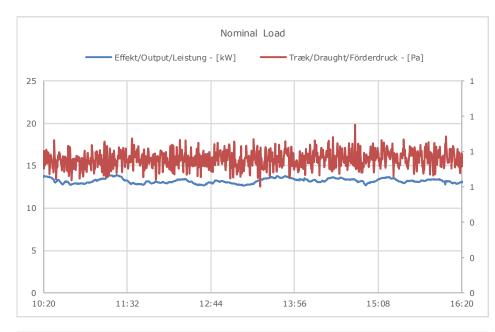

8. Appendices

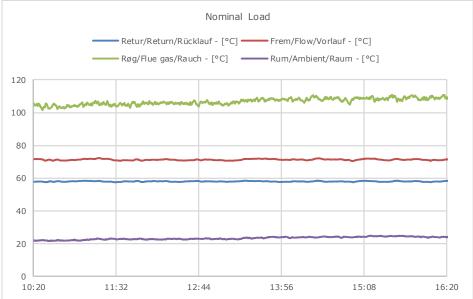
Appendix 1: Graphs of measurements during safety and function checks Appendix 2: Graphs of measurements at nominal and partial heat output

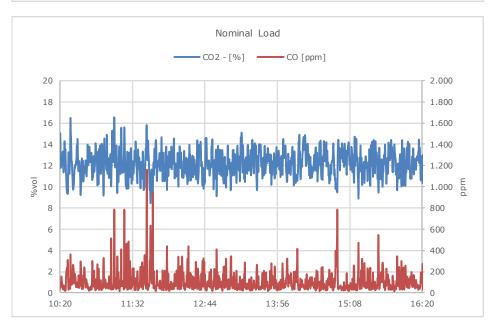
Appendix 1: Graphs of measurements during safety and function checks



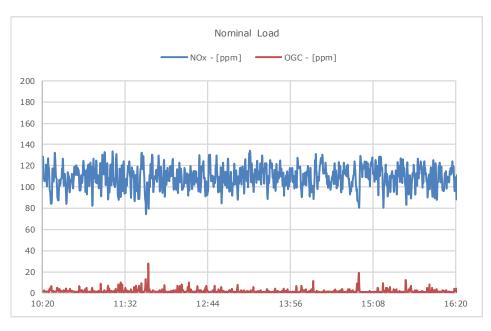


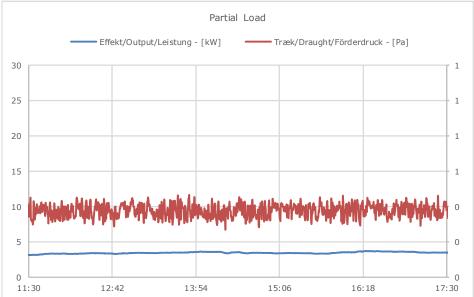

Appendix 1: Graphs of measurements during safety and function checks

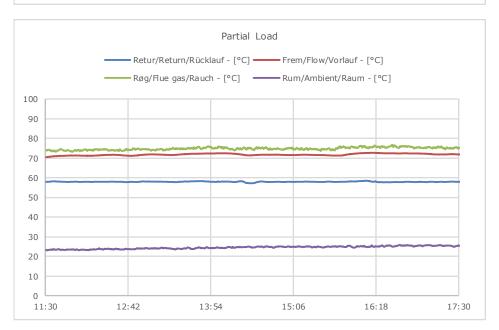


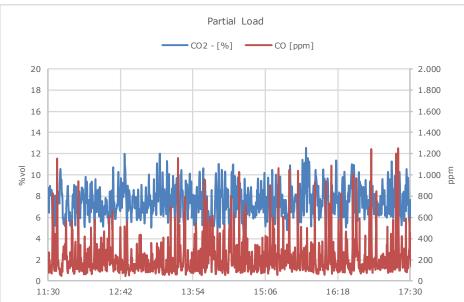


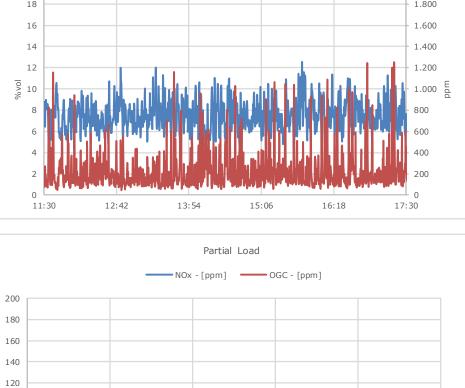












Appendix 2: Graphs of measurements at nominal and partial heat output

11:30

12:42

13:54

15:06

16:18

17:30

DANISH TECHNOLOGICAL **INSTITUTE**